Realization of a Lost-Cost USB based ISDN Terminal Adapter using
an 8-bit Microcontroller

0698

Harald Lehmann
Siemens AG, Munich
Semiconductor Group
System Solution Center

With the latest generation of Personal Computers (PC) and the new operating system Win-
dows’98 (and later NT 5.0) the Universal Serial Bus (USB) will become the standard connec-
tion for additional peripherals to the PC. All devices connected to a standard serial (COM
ports) or PCI bus will utilize the USB. Therefore all telecommunication devices like Mo-
dems, Terminal Adapters for ISDN, Telephones, etc. can use an USB interface to connect to
the PC. This will make it easy for everyone to hook-up their PC to the Super-Information-
Highway.

This article will give an insight in the possibilities and technical details how to design an
USB supported ISDN Terminal Adapter (TA). The application, based on a 8-bit microcon-
troller with an USB interface on-chip, will be explained. The main goal is to keep the appli-
cation design as the same or even at lower cost than traditional solutions. Everything is
based on state-of-the-art technology and an actual running solution.

Function of an ISDN Terminal Adapter

ISDN PC card. These cards are very often

An ISDN Terminal Adapter (TA) or
ISDN PC-card provides nothing else than a
connection from the PC to the ISDN net-
work. An ISDN TA is usually an ACTIVE
device which is connected via a COM port
to the PC. Most of the protocol is handled in
the “box”, thus there is only a little CPU
load on the PC.

On the other hand, is the ISDN PC
card the low cost passive solution where the
main functionality is done in the PC. The PC
uses the internal PCI bus to connect to the

realized as an “one-chip-solution” like with
the TPAC-chip (PSB2115) from Siemens.
The IPAC will handle the lower layer of the
ISDN protocol. The part has integrated S-
transceivers (for the ISDN S, lines), B-
channel and D-channel protocol-controller
and a microcontroller interface.

The upper layers, depending on the
User interface is managed by the PC soft-
ware. Slower PC’s in the past were only able
to get connected with other digital sites like

an internet provider which offered an ISDN
dial-in or other users with an ISDN PC card,
too.

Today with the increasing micro-
processor speeds, the PC software can even
“emulate analog modem functions” to en-
able the “digital” user to get connected to
all the standard analog telecommunication
services like fax machines, voice, Bulletin
Board Systems (BBS), etc.

This shows that less complex hard-
ware is necessary due to higher CPU per-
formance available on the PC.

The concept of a low-cost USB TA

Any low-cost USB TA is nothing else
than a ISDN PC card which is outside the
PC and connected via the USB.

Simplified, the USB replaces the PCI
bus as a connection to the ISDN hardware,
or the ISDN protocol is passed through the
USB directly to the host (PC). The ISDN
protocol is fully managed by the PC.

It might be a concern that the USB
connection is more erroneous than the PCI
connection, but because the error rate of the
ISDN lines is much higher than the USB er-
ror rate (around factor 1000) it is not a
countable disturbance for the transfers. Ad-
ditionally, the several layers above this
physical layer are designed to cover this is-
sue easily.

The hardware solution is simply an
ISDN protocol handler (IPAC, PSB2115)
and the Siemens SAB-C541U microcon-
troller with on-chip USB peripheral.

USB transfer types and their usage

BULK transfers are for transferring
large, non periodic, bursty data with the
guaranty of error-free delivery. There is no
bandwidth reserved for it, and only if the
bus has unused bandwidth, data will be de-

livered. Bulk is used for printers, scanners,
etc., it is not used in this application.

ISOCHRONOUS transfers are for
data which need to be periodically sent with
a predictable latency on data delivery. Here
the delivery is more important than the er-
ror-free data, thus the bandwidth can be
guaranteed up to 90% of the max. band-
width. Isochronous is used for audio, video
and telephony. Here the ISDN data (D-
channel and B-channel frames) is fully
transferred using this transfer type.

INTERRUPT transfers are for small
bursty, low bandwidth data with the guar-
anty of error-free delivery. This transfer type
doesn’t interrupt anyhow the system. The
word interrupt is only used for the kind of
devices which were using interrupts before
the implementation of USB - like mice,
game-controls or keyboards. The host (PC)
is polling these devices and is checking for
"interrupt events". The polling interval is
programmable from Ims to 255ms at Full
Speed(FS = 12Mbit/sec) and 10ms to 255ms
at Low Speed(LS = 1.5Mbit/sec).

CONTROL transfers are for bursty,
host initiated (bus management, configura-
tion) data delivery with a max. bandwidth
guaranty of 10% and is error corrected.

Control | Bulk|
|<7Frame =1ms %
E Stereo Audio % printer - H

prnter:

E Telephony y low-speed _ [Helfl L:‘|
Bulk:

Isochronous any LS (15 Mbitis)
device like keyboard,
mouse, etc.

Figure 1: USB frame model, two examples

Details to the ISDN / USB data transfers

Bulk and isochronous are the only
transfer types which could handle the
load/bandwidth for the B-channels. The high
overhead on control transfers with up to 45
Bytes per packet at FS are not suitable for
this amount of data. Interrupt transfers are
excluded because of their one-way, device to
host (PC), data transmission.

On ISDN there is a continuous data
stream which can not be guaranteed with
transfer type bulk.

Isochronous is then the resulting
choice for the B-channels. The lack of error
correction with this transfer type will not af-
fect the general function as already men-
tioned before.

It looks like, the low bandwidth of the
D-channel would allow to use the control-
and interrupt-transfer types. The guaranteed
bandwidth of 10% for the control transfers
and the polling interval up to 1ms, for the
interrupt transfers, could be sufficient
enough for the D-channel data stream. But
the host(PC) buffer-handling for control-
and interrupt- transfers will add unpredict-
able delays which will not fit into the con-
stant data stream requirements for ISDN.
This will exclude these transfer types, and
the isochronous transfer type is used for the
D-channel, too.

Layer model
ISDN-PC-card -~ USB ISDN TA

ISDN PC Card USB ISDN TA

R =
_ ppplications | | Applications i)

CAPI Common 10| CAPI

N Applcaon neace |
HiInterface S I
Virtual HW, (IIDN controller)

1 UsB(—)IIlN

PhYS'c I ISA/FCI Bus . USB-standard OS-driver Unpredictable
Delays!

...... e i
'—--USB pipest- =l ———————— 2=

[
ISDN .
ISONepeitis |

Figure 2: Layer model PC card « USB TA

Figure 2 shows the basic layer models for
both ISDN applications in their structure.
The Common ISDN Application Interface
(CAPI) is the standard interface for the PC
application software.

Through the hardware interface the
ISDN-PC-card has a direct access to the
ISDN hardware. The PCI-bus establishes the
physical connection. The data stream (B-
channel) and ISDN controls (D-channel)
can be controlled with virtual no delays via
this connection.

The USB ISDN TA needs to have in
comparison several layers between the CAPI
and the physical access to the ISDN con-
trols. In this application example there is a
virtual ISDN controller implemented which
looks to the CAPI like the HW device. At
this point there is no USB visible to the Ap-
plication software through the CAPI. An ad-
ditional layer will do the connection to the
USB adaptation of the operating system
(OS). The OS has buffers , stacks, etc. and
will schedule the messages to be sent
through the USB pipes. On device site the
firmware (running on the USB microcon-
troller) has implemented a buffer structure,
too. Later in this article the details on this
will be explained.

USB buffer delay

Due to the USB buffers delays on de-
vice- and host-site, the whole concept of a
TA will be different to traditional TA’s.

On an ISDN PC-card the interrupt la-
tency is deterministic, a couple of millisec-
onds. On time critical tasks a direct interac-
tion of the PC-CPU is possible.

This is not possible on USB. This
Terminal Adapter (TA) have to have a cer-
tain amount of infelligence to handle the
USB specific delays. But this intelligence
should just be right enough to handle the
delays, so the TA is still in the “low-cost”
arena, in comparison to active TA’s.

An active TA (an external “box” with
additional external power supply) handles,
besides the B-channel data-transfers, a large
amount of the ISDN protocol (layer 2 and
3). This frees more CPU resources from the
PC, which is very helpful for lower per-
formance machines (<100 MHz).

This application shows a cost efficient
USB solution comparable to an ISDN PC-
card but as an external “box” with no exter-
nal power supply. This is typical for USB
devices!

Partitioning the ISDN into USB data

Every logical point to point connection
in USB is called pipe. The ISDN B-channel
data stream 1is called the B-channel pipe. On
ISDN there are 6 data pipes. (B1_IN,
B1 OUT, B2 IN, B2 OUT, D_IN,
D _OUT). The data sink and source of every
pipe is called endpoint (EP). As a result it
looks like we need 6 USB endpoints. Addi-
tionally every device needs to have the end-
point 0, the control EP which is used by the
host for bus management.

Because of the fact that the B1 and B2
pipes are equal in the function they can
share endpoints. Instead of 4 independent
EP’s we need only 2 shared EP'’s, one for
each direction. A shared EP is physically the
same as a standard EP. The realization is
done in software.

Used endpoints (EP):

EP0, Control (IN/OUT)
device configuration (IN / OUT), device
control

EP1, Isochronous (IN)
Received B1- and B2-channel data

EP2, Isochronous (OUT)
B1- and B2-channel data transmission

EP3, Isochronous (IN)
D-channel control and D-channel data
transmission and
Sync. feedback information for EP2

EP4, Isochronous (OUT)
D-channel control and D-channel data re-
ception

Realization with the SAB-C541U and the
IPAC (PSB2115) from Siemens

This Example outlines a concept for
ISDN D-channel handling and B1-/ B2-
channel data transfer, as well as the resulting
performance requirements for an ISDN
Terminal Adapter (ISDN TA) attached to
the Universal Serial Bus (USB).

The USB ISDN TA does not imple-
ment higher layer ISDN protocols but pro-
vides the means to access the ISDN D- and
the two B-channels. The IPAC and the SAB-
C541U USB Microcontroller will be used.

The IPAC implements the four-wire
S/T interface used to link voice/data termi-
nals to an ISDN.

The C541U controller is a member of
the Siemens C500 family of 8-bit Micro-
controllers and provides an on-chip USB
module with on-chip transceivers (compliant
to the USB specification) which enables the
direct connection to the USB, Full or Low
Speed possible, with four EP’s + control
EPO.

SAB-C541U

USB memory
(256 Bytes) —
max. 9. B1, B2 out |

(o™ A
E 2 B‘ (2 Byte every 125ps)
LIJZICD |
= T v
1. B1, B2 out
max. 9. B1,B2in
09 A
& B (2Byte every 125ps)
Lu':_) © |
o< v
1HODgy, | TBT.B2in__—)
Ow
U)-o—l
N
Wz o
Z | —!
8,\
29
ez
W=
2%
3 —
30)
EE2
“Se
—>

IPAC
(PSB2115)

B1 channel

B2 channel |

A

Interrupt controlled
every 125us

B1 channel
B2 channel

D-channel

reception

D-channel

transmission

A

Control Register

isdnasy2.vsd

Figure 3: Block diagram SAB-C541U IPAC

Assumption:

The B-channel HDLC en-/decoding
and protocol is completely handled by the
host(PC).

The IPAC is equipped with the IOM-2
interface for high-speed interconnection of
multiple ISDN peripherals. The data are in
packet format with a frame rate of 125us. B-
channels, D-channel and the monitor-
channel (control function) are transferred.
With the frame strobe generated by the
IPAC, it is possible to trigger an external
interrupt of the C541U and read-out the

internal registers via the data/address bus
which is connected to the microcontroller.

The ISDN timing is asynchronous to
the USB timing. Every 125us is an IOM-2
frame interrupt generated. External interrupt
1 is used to keep track of the IOM-2 data
frame timing.

The error rate of USB is smaller than
the error rate of ISDN. Additional protocol
layers above the USB (device ~ PC) are
protecting the isochronous data transfers.

Dual buffers for continues data stream

To realize the isochronous data
stream, a 256 bytes buffer is implemented
on the USB interface. For every EP a mem-
ory block can be assigned to it. In this ex-
ample 8 byte blocks are reserved for the
control endpoint (EP0) and the D-channel
IN- and OUT- endpoints (EP3 / EP4). The
size of the B-channel shared endpoints (EPO
/ EP1) is 32 bytes. To allow the USB to have
continues data transfer it should be possible
to read or write into the buffer while on the
other side, the opposite is happening.

USB

Figure 4: USB buffers access read / write

The 32 Bytes per B-channel are con-
figured in this mode. 64 Bytes are therefore
allocated to support the dual buffer mode.

To protect the data for overflow errors
the buffers are swapped automatically by the
Interface.

Synchronization of USB and IOM-2 bus

The IOM-2 bus clock is controlled by
the ISDN-switching-system and the USB
clock is generated by the PC internal oscil-
lator. Little differences between both clocks
will result in fitting 7, 8 or 9 IOM-2
(125us)-frames in one USB (1ms)-frame.

On one hand, the ideal solution would
be to have both synchronized. This is possi-
ble within the USB specification, one device
could be the “Clock-Master-Device”. This
device could tune the USB frame timing by
+ 0.5% (£ 63 bits out of the 12000 bit per
frame). The obvious disadvantage is that
only one device can be the clock-master in
the system. It can not be guaranteed that the
clock-master function is already used by an-
other device.

On the other hand, it is not really nec-
essary to synchronize both protocols. The D-
channel IN-pipe will additionally be used to
send a feedback-byte (figure 7, SYNC) to
the PC software. This is a very easy way to
keep both sides synchronized.

swap

USE
page1

CPU CPU

D-channel IN-pipe:

8 Bytes

cMDY' 57 D3 DA D D6] D7

SYN&OD [indication]

Resulting B-channel OUT-pipe:

16 Bytes
(default)

B1[2[B1]B2[B1][B2[B1][B2]B1]B2][B1]B2[B1]B2]=il=H]=

2 | 4 | & | 8 ‘ 10 ‘ 12 ‘ 14 16 18

l——— 32 Bytes

Figure 6: USB buffers swap on overflow

The firmware will be notified via a
flag. On read / write attempt to an empty /
full page the interface will automatically is-
sue a NAK (Not Acknowledge) to the host
(PC).

Figure 7: D- / B- channel pipes

This implies that the device is
equipped with a circular buffer structure to
support all the delays which are resulting in
the incoming data out of the ISDN, trans-
ferred via USB into the PC’s buffer-system,
the buffer management, the reaction of the
PC’s drivers back through the USB into the
device back to the ISDN.

Details to the circular buffers

Direction ISDN—USB (OUT-pipe)

This buffer stores the B-channel data
out of the IOM-2 frames. The buffer size
relates to the amount of data which can be
received within one USB frame (1ms). Ad-
ditional bytes are added for possible soft-
ware delays which can be fine tuned on the
running prototype. For simplification the IN-
pipe has the same size (32 Bytes) as the
OUT-pipe. Every 125us the IPAC is gener-
ating an interrupt which triggers the micro-
controller on a new IOM-2 frame.

The 2 Bytes (Bl and B2) are fetched
from the IOM-2 register inside the IPAC
and transferred to the circular buffer, real-
ized in the internal microcontroller-RAM.
The pointer (OUT-write ptr) will be incre-
mented.

Every millisecond, the USB interface
generates a start-of-frame (SOF) interrupt.
All the stored data from the buffer will be
transmitted to the USB unit. It could be 14,
16 or 18 bytes transferred , depending on
how asynchronous the frame clocks are to
each other.

IN_read_ptr
J ISAC-S

IN_write_ptr IN_write_ptr

IOM-2 Int.

OUT_read_ptz/
SAC-S OUT_write_ptr

OUT_write_ptr

IN_read_ptr

;/ ISAC-S

OUT_read_ptr

IN Queue

A

IN_write_ptr

IOM-2 Int. — IOM-2 Int. SOF Int.

v v

OUT_read_ptr

Figure 8: Circular buffers (part 1)

Direction USB—ISDN (IN-pipe)

At least half of the buffer must be filled
will dummy data during the phase of initializa-
tion. With every IOM-2 interrupt, data will be
transferred to the IPAC.

The pointer (IN-read ptr) will be incre-
mented.

Every SOF-interrupt the buffer will be
filled with new Data out of the USB unit. It
could be 14, 16 or 18 bytes transferred, too. But
this time the PC controls the number of bytes.

The PC has to make sure that the number
of receive bytes is on average the number of
bytes which has to be sent to the ISDN.

This can be excluded by selecting the right
buffer-size:

_ E3 * %
Bsize_2 AfISDN/USB fbyterate tPCdelay

B, Buffer-size in bytes

fbyteme Byte-rate, both B-channels
(16 Kbytes / s)

tpcgelay max. PC-buffer delay the

Afispajuss
max. difference between
ISDN and USB frame

clock in percent / 100

The max. difference between the ISDN and
the USB frame clock is according the specifications,
with ISDN of £0.01% and USB of £0.25% additional
the +0.5% if one device is doing the max. master-
clock shift. Together this results in £0.76% difference
between both frame clocks.

The max. delay on Host-site (PC) is not accu-
rately known yet. But it will be properly in the area of

The resulting delays are covered with the 100ms.
circular buffers. Buffer over- and undgr-run will B... = 2% 0.76% /m * 16Kbytes * 100ms
cause a fatal error by stopping the continuos data ~268B
stream.
14, 16 or 18 Bytes from USB IN Queue IN_write_ptr

IN_write_ptr

— IOM-2 Int. SOF Int.

\4

OUT_write_ptr

AN

IN_write_ptr

OUT Queue OUTl(Mrite ptr
OUT_write_ptr

) '
\\\ B1.B2 B1.B2 <
S X

4

| IN_read_ptr

IOM-2 Int.

OUT_read_ptr

OUT_read_ptr

Figure 9: Circular Buffers (part 2)

This buffer size is easy to implement in the
internal microcontroller RAM(256Bytes) of the SAB-
C541U. This solution makes it possible to synchro-
nize USB and IOM-2 to each other without tempering

with the USB clock.

The additional software overhead on device-
and host-site is a necessary trade-off to keep this so-
lution in the low-cost range.

Performance estimation for the SAB-C541U

B-channels

Today's external TA's (usually con-
nected via RS-232) are active units with at
least a 16-bit microcontroller. But this arti-
cle shows a low-cost USB solution with the
use of the SAB-C541U 8-bit microcontrol-
ler. Is this part suitable for a TA? This
chapter will explain in details the imple-
mentation with the C541U.

The software to the buffer management
is partitioned into two interrupt service rou-
tine (ISR). One is triggered every 125us by
the IPAC writing and reading the circular
buffers with IOM-2 data. The other is the
SOF(USB) triggered (1ms) ISR which trans-
fers data between the USB and the ISDN
(IOM-2). The IOM-2 triggered (125us) ISR
is faster and has the highest priority to even
interrupt the SOF ISR.

IOM-2 Interrupt
(125us)

read from circular Buffer

(internal RAM of C54x)
B1_IOM (DU = IN_Queus
B2_1OM (DU] = IN_Gueue

write to circular Buffer
{internal RAM of Ch4x)
OUT_Gueue = B1_IOM (DD)
OUT_Gueue = BZ_IOM (DD)

Return from Interupt

SOF-Interrupt
(1ms)

"
i

L4

write data to

OUT_Queue USB memory
{circular Buffer) OS?B@ELES (;1)
empty ? USE_FIFO =

OUT_Queue (B2)

| YES
y |
read data from
USB memory NO | USB memory
—® IN_Queue (B1) =
7 !
empty * USE_FIFO
IN_Queue (B2) =
USB_FIFO
YES

¥

Figure 10: Flow-charts, interrupt service routines (ISR)

Both interrupt service routines handle the
two B-channels (in both directions) simulta-
neously. The maximum runtime of the IOM-
2 interrupt service routine is 64 cycles
(32ps) that is ~25% of the C541U comput-
ing performance.

The USB interrupt service routine is called
every 1000us the maximum runtime of the
USB int. service is ~460 cycles (230us).

The USB interrupt service routine will be
interrupted

(max. twice) by the IOM-2 interrupt service
routine that is 23% of the C541U computing
performance.

As a result, the C541U will spend only
49% of its computing performance on
maintaining the two B-channels through
the isochronous pipes.

D-channel

The following assumptions have been
made to accomplish D-channel control and
D-channel frame transfer:

The host software provides vendor
specific commands to be issued via the USB
control pipe. The isochronous pipe provides
at least the capacity of 8 bytes per transfer.
The USB control pipe is used to issue com-
mands to the USB ISDN TA

The USB isochronous pipe is used to

transfer status information and received D-
channel frames from the USB ISDN TA to
the host. The interrupt pipe provides a
transmission capacity of 8 bytes per USB
frame.
The USB ISDN TA provides buffers for
temporary storage of D-channel data which
has been received or shall be transmitted
until the data can be processed.

The D-channel frame reception and trans-
mission is completely handled by the firm-
ware in the USB ISDN TA

The firmware supports the following
D-channel related functions via specific iso-
chronous commands:

[0 D-channel controller and S-transceiver
initialization

[0 D-channel frame transmission

[0 layer-1 status control

[0 HDLC controller reset

The USB ISDN TA firmware reports
the following D-channel related information
via the isochronous pipe to the host:

0 received D-channel frames

O layer-1 status information

0 HDLC controller status information, e.g.
the completion of a D-channel frame

Memory block for

Transmit == D-channel frame

FIFO data

ISON

temp. Storage of Isochronous
D-cha_nnel Plpe
to be transmitted transmiEea \\1

r | ._Control Pipe |

= wm—— Control pipe commands _

Sy

Isochronous
Pipe

Status
messages

y Ly

~.
Queue for
messages from
| device to USB

Receive |
FIFO data t Pool of memory |
> blocks for temp. |

Storage of

Isochronous pipe
messages

additional |
messages |
parameters |

“_ RFIFO data bytes

Figure 11: Data-flow for the D-channel

Data partitioning on the D-channel

For an example; 49 bytes D-channel
data have to be transferred to the ISDN. The
D-channel isochronous pipes are the size of
8 bytes:

D1 D7 o3[D4 D5| D6| D7]

Dol
ol [optional parameters]

Figure 12: D-channel OUT-package

The command identification byte
(CMD 1ID) is used to determine the kind /
function of the optional parameters (7
bytes). Assume the CMD ID is "send data"
then the followed 7 bytes will be the length
(here: 49 bytes) and the first fragment of the
whole data block. Then the next package
will indicate (via CMD ID) that standard
data is transferred.

frag. counter Hnen /24
length (e.g. 49) -+ A —
—_ (01) : i
Q B E]
o (02) i i ext. RAM
= i | controlled '
© I | byuc
® —— i = 5
= \ =] 5 o | e =%
“‘k‘-‘k‘ E \ E_ | Tt g
\
(49) 4B M=
t, t+1ms t;+ 4Sms

Figure 13: D-channel OUT-package , data fragmentation

The frames are received by the USB
interface. The microcontroller Firmware will
reassemble the fragments together again and
transfers them interrupt controlled, via the
register access, to the [IPAC (ISDN).

Incoming data from the IPAC (ISDN)
are using the following D-channel IN-pipes:

D) D1 D2 D3 Bzl D3| 3] D7
ey CMD B A .
|;KJM,~ D [indication]
Queue element including data
| e ﬂ e tatus”' izl izl [d nAaI ¢ afal AT ml

i
or

| SYNC ﬂ pointer m|

Il—&

Queue element including pointer
i) —oal 5T 7
[pEo B nE el ns]

= e

pool
of
memory |
/ blocks

Figure 13: D-channel IN-package, example

Besides of the SYNC-byte which was
already explained, are the IN-packages
similar to the structure of the OUT-
packages.

Some layer-1 controls are handled on
device site. The resulting data will be place
in a "pool of memory blocks" which are ac-
cessed via the pointers indicated through
the D-channel packages.

For the performance estimation the
maximum basic rate D-channel load of 16
kbit/sec is assumed. The following functions
are carried out by the firmware:

[0 decoding of commands received via the
isochronous pipe

U copying of D-channel transmit data
(fragments) from the USB controller FI-
FOs to the RAM buffer

[initiation of a D-channel frame transfer

[0 handling of IPAC interrupts, reading and
temporary storage of received D- chan-
nel frames

[0 copying of received D-channel frames
(or frame fragments) from the local
buffers to the isochronous pipe

[J transmission of device status notifica-
tions to the host via the isochronous

pipe.

The 16 kbit/sec data-rate requires
packets of 32 bytes (32 bytes = size of the
D-channel transmit and receive FIFOs). The
data is transferred from USB to the IPAC
and vice versa in 16ms periods. In addition,
the CPU-load for temporary storage of a
D-channel frame has to be considered. One
additional notification from the USB ISDN
TA to the host shall be generated in each
16ms period, too. Instruction cycle is 500ns
(@ 12MHz external) max. 5000 cycles are
needed to execute the sample routines.

The C541U will spend only ~20% of
its computing performance on maintain-
ing the D-channel.

Result

Together, the transfer of D-channel
messages from USB to the IPAC or and
vice versa and the B-channel data transfers
from USB to IPAC and vice versa, the
C541U will spend approx. 70% of its com-
puting performance for doing the basic
functionality of an ISDN Terminal Adapter.

Conclusion:

The USB will be the PC connection
for the future. Every device-manufacturer in
this arena is looking into or already devel-
oping devices. The big boost for this bus
system will happen with the release of Win-
dow 98.

These kind of low-price ISDN termi-
nal adapter with the easy to use interface as
they are:

U “hot” plug ‘n play

[0 no extra power supply

[J automatic detection

O full bandwidth (128Kbyte/sec)
will make high-speed communication for
everyone desirable and possible.

Remark:

This ISDN TA solution is focused on “low-
cost”. It is not intended to fulfill the USB class defi-
nition, communication (CDC), which can be found at:
http://www.teleport.com/~usb/devclass.htm.

This means that the SW driver for this solution
would not be included in the OS, but is shipped sepa-
rately with the ISDN TA device.

C500

Prog. Watchdog Timer
{C541U only)

BB (SP) Interface,
(CoA AU only)

| Times 1

4
| Times 0 .
\

USB

Vigelie

™
a
2
1
o
wn
c
@
L.
'—

Intemupt Wmt:

OTP

4K x B (C540U)
8K & 8 (C541U)

Emulation
Support logic
(E-Hooks)

Port 0 8 lines

6/ 8 lines ”ﬁ

8 lines

Port 1

Port 2

Port 3 8 lines

Figure 6: Blockdiagram SAB-C541U / -C540U

List of feature of the SAB-C541U /C540U

Enhanced 8-Bit C500-CPU

500 ns Instruction Cycle Time @ 12
MHz CPU Clock

Two 16-bit Timer/Counters (C501 com-
patible T0/1)

|4kbytes in the C540U] 8 Kbytes OTP /
256 bytes RAM

USB Device Core (FS/LS fully speed
supported)

Synchronous Serial Channel, Watchdog
Timer [C541U only]

|

OoOooOoad

LED Driver capability on 3 dedicated
pins, 10 mA /4,5t0 5,5V

Power supply voltage range: according
to USB spec.

Enhanced Hooks Technology for easy
emulation

48 MHz PLL on-chip for FS

D+ D-, on-chip transceiver

P-LCC-44 and S-DIP-52 package

30 digit. I/O Ports, 32 in SDIP52

Contact:
Harald Lehmann
Siemens AG
HLCEM
P.O. Box 80 17 60
D-81617 Munich (Germany)

mec.support@hl.siemens.de

